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Abstract

In this paper a global vision scheme for estimation of positions and orientations of mobile robots is presented. It is
applied to robot soccer application which is a fast dynamic game and therefore needs an efficient and robust vision
system implemented. General applicability of the vision system can be found in other robot applications such as mobile
transport robots in production, warehouses, attendant robots, fast vision tracking of targets of interest and entertainment
robotics. Basic operation of the vision system is divided into two steps. In the first, the incoming image is scanned and
pixels are classified into a finite number of classes. At the same time, a segmentation algorithm is used to find
corresponding regions belonging to one of the classes. In the second step, all the regions are examined. Selection of the
ones that are a part of the observed object is made by means of simple logic procedures. The novelty is focused on
optimization of the processing time needed to finish the estimation of possible object positions. Better results of the
vision system are achieved by implementing camera calibration and shading correction algorithm. The former corrects
camera lens distortion, while the latter increases robustness to irregular illumination conditions. © 2004 ISA—The
Instrumentation, Systems, and Automation Society.
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1. Introduction also many challenges in mechanics, e.g., how to
make robots smaller, faster, equipped with many

In recent years, mobile robots playing soccer sensors, or in other words—how to make them
have gained much popularity among researchersbetter. The area has proven to be an excellent ap-
worldwide. This is mainly due to the fact that they proach in engineering education not only because
serve as an excellent test bed in several areas ofof the reasons explained above but also because its

research interests, such as path planning, obstacleattractivenes$1]. Students can get the results of
avoidance, multi-agent cooperation, game strat- their achievements through the game and immedi-
egy, real-time data and image processing, robotic ate feedback enables them to evaluate their algo-

vision, artificial intelligence and control. There are rithms.

The paper presents a design of a global vision

*Tel.: +386 1 4768701; fax:-386 1 426 4631E-mail system for estimating current object positions and

address gregor.klancar@fe.uni.lj.si orientations on the playground. The MiroSot cat-
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egory soccer robots we are interested in are with- nected regionare distinctively labeled. With the
out on-board position sensors. Thus a precise andmain purpose of obtaining all fully connected re-
fast global vision has to be designed for robots’ gions, a back-stepping algorithm is applied. Both
control and navigation in a partially controlled, steps are done with just one scan of the image.
dynamically changing environment. When design- Then the logic part and a simple optimization
ing the vision system, the following requirements method are employed to select the proper regions
have to be accomplished: from the previously generated ones. After this
logic the positions and orientations of the objects
on the playground are estimated. To improve re-
sults of the vision system the camera calibration
and non-uniform illumination correction algorithm
are implemented. The former corrects distortion
caused by the camera lens, thus achieving a more
The last characteristic is essential for the system accurate and precise objects positions estimation,

e computational efficiency,

« high reliability,

e good precision, and

¢ robustness to noise, non-uniform illumination,
and different color schemes.

to function well when using it under different con-
ditions present at competitiofg].

With color cameras there are many possible
ways to carry out the detection of moving objects.

while the latter improves robustness to irregular
illumination and non-uniform illumination condi-
tions.

The paper is organized as follows. In Section 2 a

Sargenkt al. [3] developed a fast real-time vision Prief overview of the system is given. The method
system by the aid of a special hardware acceler- used for pixel classification is expla_uned in Section
ated system, which only makes sense when soft- 3- Sectlon'4 focuses on the algorlthms for image
ware optimizations or accelerations are not pos- Ségmentation and region labeling. The algorithm
sible. More reliable vision tracking of moving for o_bject estimation is |IIustrated_ in _Sect|on 5.
objects could be achieved by robust statistics and S€ction 6 resumes the camera calibration and non
probability distributions used. A good example of uniform illumination correction implementation
the latter is given in color-based face tracking together W't.h experlmgntal results sho_vvn. The pa-
implemented by BradsKi]. Bruceet al. [5] sug- per ends with conclusions and some ideas for fu-
gested a fast vision system for mobile robots by ture work.
efficient color segmentation and two pass con-
nected region determination algorithm. Another 2. System overview
important contribution in robot soccer vision de-
sign is introduced by Wyetbt al.[2] with special The soccer robot setup, Fig. 1, consists of ten
consideration given to robustness of varying play- MiroSot category robotgforming two teams of
ground illumination conditions. Most of the ap- size 7.5 crﬁ, rectangular playground of siz&.2
proaches try to classify pixels of an image into one x 1.8 n?, color NTSC camera, frame-grabber Ma-
of a predefined number of classes. The most com-trox Meteor 2, and personal computer Pentium 4.
mon are: linear color thresholding, K-nearest The vision part of the program processes the in-
neighbor classification, neural net-based classifi- coming images, of a resolution 0f640
ers, classification trees, and probabilistic methods x 480 pixels, to identify the positions and orien-
[6-8. tations of the robots and the position of the ball.
In this paper, a fast approach with constant Finally, the control part of the program calculates
thresholding and back-stepping algorithm is pre- the linear and angular speeds,andw, that the
sented where special attention is given to the effi- robots should have in the next sample time accord-
ciency aspect. The thresholds can be presented asng to the current situation on the playground.
boxes in three-dimensional color spaces. TheseThese reference speeds are sent to the robots by a
thresholds are determined by means of off-line wireless connection. To identify the orientations,
learning. If an incoming pixel color falls inside each robot has to have two color patches. One is
one of the predefined boxes, then it is classified asthe team color and the other is the identification
belonging to the class associated with this box. color patch. According to FIRAFederation of In-
This first step is followed by the second step ternational Robot-soccer Associatjonules, the
where the pixels belonging to one cla&s con- team color must be blue or yellow, the ball must
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Fig. 1. System overview.

be orange, and identification colors can be any
color except the team and ball color. The patch

3.1. Color spaces

positions and shapes can be chosen freely. In our The color image can be presented by the use of
case, square patches were used. They were placedifferent color spaces such as RGB, HSI, YUV,

diagonally, with the team color being closer to the
front part of the robot, Fig. 2.

3. Pixel classification
To enable detection of different color patches,

each pixel has to be classified into one of the pre-
defined colors.

Team

Ident.

\4
S

Fig. 2. Color patches on the robot.

and others. By using the RGB space, the regions
with the same color are best presented in a three-
dimensional color space with conical volumes. If
constant thresholds which form block®ctangu-

lar prism in RGB space are used, then the de-
scription of color regions becomes rather difficult
[5]. When using simple thresholds for pixel clas-
sification, HSI and YUV color spaces are most
appropriate. They code the information about
chrominance in two dimensiorisl and S or U and

V) and only one dimension includes the informa-
tion about intensity(I or Y). With these color
spaces, any particular color on the playground can
be described with wide areas between thresholds
in the intensity dimension, while the threshold ar-
eas for other chrominance dimensions are narrow.
Also these color spaces are more robust to differ-
ent illumination conditions. Both RGB and YUV
spaces were used in our experiments with constant
thresholds, and, as expected, the second color
space gave better classification results. However,
to obtain the YUV color representation, a transfor-
mation from the original RGB space had to be
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Fig. 3. Look-up tables for pixel classification.

done. This transformation was time consuming al- and 5AND operations for each pixel classification.
though the optimization by using look-up tables This code is repeated for each pixel and color we
was used. Including the optimization it requires want to classify.

some 30 ms, while the rest of the program takes To improve this operation, i.e., to check all col-
only 7 ms to identify objects from the image. ors at the same time, the idea of parallelism by
Therefore, YUV or any other color space should means of look-up table is considered. Thride
be used only when it can be directly obtained from w 32 pit integer arrays are allocated, whétecor-
the frame grabber. In the application the analog responds to the number of color levelssually
NTSC cameraRGB color spacewas used with N=256) and the maximum number of colors to
image produ_ctlon time of 33 ms0 H2). The Im- be classified is 32Fig. 3). Each bit in a 32 bit
age processing was done in double buffering mode o o |ocation is associated with one color. Al-

which involve_s gra_lbbin'g' int_o one imagg while though the algorithm is able to classify 32 differ-
processing(object identification the previously ent colors, only 13 are enough for the purpose of

grabbed image. Double buffering mode is usually the robot soccer game. Because the computer has
used in real-time vision applications for it enables N 9 ) . P .
a 32 bit arithmetic, the computational burden is

concurrent image grabbing and processing. X .
geq g P g the same as for 16 bit memory location only.

3.2. Thresholding Let us suppose that we wgnt to classify a yellow
patch with the color values in the following range
The basic idea is to classify each pixel accord- 200« = R< =220,
ing to the preset color thresholds of each object. 530~ —G< =250
Initially, this part was done using the following 10< = B< =30.

code:
for i=1 to number of colors on playground Suppose this color is associated with the 31st bit
if (R>=R_lower_boundanD of each memory location. So in this case the high-
R< =R_uppet_boundAnp est bits in the memory locations between 200 and
G>=G._ lower_boundAnD 220 inRClass 230 and 250 inGClass and 10

and 30 inBClassare set to 1, respectively. The
same procedure is then performed for bits 0-30
for other color patches.

At the run time, memory locations with the in-

G<=G_upper_boundAnD
B> =B_lower_boundAND
B<=B_upper_bound)

Pixel_color=i-th color; dex corresponding to current pixel G, B values
else Pixel color=background; are taken. The bitwiseND operation between the
end. chosen memory locations gives the information

This simple part of the code requires 6 relational about the classification of pixels. If the result has
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the 31st bit set to 1, then the pixel is classified as
yellow.

With this methodology, a multiple thresholding
(the thresholds for all color patches checked at the
same timg¢is made in only one scan of the image.
As the multiple threshold operation takes just two
AND operations, it significantly reduces computa-
tional burden.

4. Image segmentation and component
labeling

To estimate patch positions, first all identifica-
tion patches and the regions belonging to the ball,
team, and opponent team patches have to be lo-
cated. The number of those regions on the play-
ground(K) can be higher than the number of all

patches due to camera noise. Image segmentation[h

in K regions and labeling is done fulfilling the
following five condition§6]:

U R=R,

*RNR=0, 1, j=12,.. K, andi#],

¢ R; is a connected region of pixels,

* P(R)=1Vi,

° P(RluRJ):O, |¢J, and Ri, RJ are neigh—
bors,

whereP(x) is a logical predicate, which takes the
value 1 if all the pixels of the region accomplish a
criterion of homogeneity. In our case, the homo-
geneity criterion is the equality in color.

According to the first two conditions, the re-
gionsR; together must occupy the entire image
and the regions must not have common pixels.
Due to the third condition, there must be at least
one path of pixels of the same color connecting
any two pixels in the region. Moreover, the re-
gions must be homogeneous with respect to the
color. Additionally the neighboring regions must
not be of the same color, as stated in conditions
four and five.

The algorithm Sequential connected component
labeling algorithm, originally developed by
Rosenfield and Pfalt9], is a well-known tech-
nique for efficient image segmentation. It requires
two passes through the image. In the first all pixel
labels are generated with equivalent labels being
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quel, focusing on one pass variant only. Pixel clas-
sification and image segmentation are merged with
the aid of a corresponding algorithm. Its main
property is that the image classification and seg-
mentation is done with only one pag®w-vice)
through the image, which considerably contributes
to time efficiency. The results of the mentioned
algorithm are labeled regions with the following
information:

e region number,

* color,

e number of pixels belonging to this region,

* pointers to each pixel belonging to this region,
» coordinates of the center of the regiog, and

Yavg-

Prior to the start of the algorithm, the color
resholds are selected for each component to be
identified: ball, robotl, robot2, robot3, team, op-
ponent robots, and opponent team.

Connected component labeling algorithm

 The algorithm starts analyzing the first pixel of
a given region of interediin our case the whole
image.

« If the color of the pixel under study is a valid
color and at the same time different from the color
of the upper and left neighbor pixels, a new region
is created Fig. 4(a)].

« If the color of the pixel under study is a valid
color and is also equal to the color of the upper or
left pixel, then the pixel under study is added to
the region of the upper or left pix¢Fig. 4(b)].

« If the color of the pixel under study is a valid
color and at the same time equal to the upper and
left pixel colors, ther{Fig. 4(c)]:

— if the upper and left pixels belong to the
same region, the pixel under study is added to
this region,

— otherwise, the pixel under study is added to
the region with a bigger number of pixels, the
pixels of the region with lower quantity of
elements are copied to the bigger region, and
then the region is deleted.

5. Object position estimation

stored. The second pass replaces each label with From all of the possible valid regions identified

its representative label. A number of researchersin a way described in the previous section, a
tried to improve the efficiency of the above algo- proper number of regions with the biggest area is
rithm mostly by optimizing the second pass of the selected. This step maximizes the probability of
algorithm. Our approach is presented in the se- correct regions being selected and not those due to
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Fig. 4. Image segmentation and labeling.
noise which usually have small areame or at To find the right identification region among all

most two pixel$. The algorithm only selects the which are classified as a particular identification
first few biggest areas and therefore small areascolor, the following condition must be fulfilled:
caused by noise are automatically excluded.

First, the team and the opponent team regions K, <dist(region,ident <Ko, (2
are investigated, the region being a probable team

patCh if it is classified as team color and if the where region is the current testing reg|odent
positions of other team patches satisfy the follow- are already chosen other identification regions
ing condition: (other robots and positive constari,, in the pre-

; ; sented example chosen lis=d, whered, is the

disregion,team =K, @) robot size(see Fig. 2

where dist is Euclidean distance, region is the cur- A table of possible pair¢Table 1) is generated
rent testing regionteam are already chosen team from selected team and identification regions with
regions, an is positive constant. In the case of rows presenting selected identification regions and
the presented example the best results are obtainedolumns presenting selected team regions. The en-
by K;=23d,, whered, is the size of the color tries in Table 1 are set to 1 if conditid@) is true.
patch(see Fig. 2 The correct team and identification pairs are then
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Table 1
Tables of possible pairs from Fig. 5.

(@ (b) ()

A B C A B C A B C
1 1 1 1 1 1
2 1 2 1 1 2 1 1
3 1 3 1 1 3 1

found following a simple procedure, where the el-  When the right regions representing color
ement indices represent the correct pair: patches are found, the final estimated patch posi-
tion can be improved by taking the weighted av-
erage of all region positions with the same classi-
fied color and less than distandg away.
For the robots that cannot be identified by the From known positions of the regions belonging
above two conditions the row associated with the to the objects, the object positions and orientations
unidentified robot is investigated and between are calculated. The position of the ball is equal to
possible team regions the one that has not beenits region position, while théth robot data(posi-
chosen yet is selected. tion x;, y; and orientationg;) are calculated as
The same procedure is repeated for opponentfollows:
players. The procedure is explained in Fig. 5.
In Fig. 5, team patches are shaded and marked

« if the row has just one element equal to 1, or
« if the column has just one element equal to 1.

with different letters, while the identification X; Xr+X Yr4y, V=V

patches are marked with numbers. Vi |l=| ——, —/——, arctan% ! ')
In the first tablg Table ¥a)] three pairs can eas- o 2 2 X1, X,

ily be found(1C, 2A, and 3B. The regions 4 and

D (see Fig. % are not considered because their al’

area is small, and their existence is probably due vy ()

to noise. In the second tabJ@able 1b)], taking
the first row and the first two columns, all pairs are
found (1C, 2B, and 3A. In the last tabld Table . L »
1(0)], taking the last row and the last column, two Wit X7, ¥, denotingith center position of the
pairs are found1C and 3A. The second robot team patch and, , y, denotingith center position
could not be found, thus leaving B as the only of the identification patch. Calculated orientation
possible team color not chosen yet in the second ¢; points to the direction of robot front sid¢he

row, the pair being 2B. side next to team color, see Fig. 2
A 3
1 B
% ]% B 2 A2
3 3
C € A B
1
C
a) b) ©)

Fig. 5. Different robots placement.
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6. Camera calibration and non-uniform
illumination correction

To improve the results of the presented vision
system the camera calibration and non-uniform il-
lumination correction algorithm are implemented.

G. Klanar et al. / ISA Transactions 43 (2004) 32842

the center of the image. The relations between
(x,y) and(X,Y) are as follows:

r=\x?+y?, cp=arctan2<X ,

X

(5

The first corrects distortion caused by camera lens, X=Rcog¢), Y=Rsin(¢).

thus enabling more accurate and precise estimated The only unknown parameter is the focal length
objects positions achievement while the second H, which can be set manually or by means of
improves robustness to irregular illumination and automation. Since there are strict rules regarding
unequal non-uniform illumination conditions. the playground shapestraight parallel and perpen-
dicular lineg and dimensions, this knowledge can
be used to estimate parametdrin model (4).
First the Hough transform is used to fit a line to
Due to the need for a good position estimation the horizontal playground boundaﬂ,he longest
based on acquired images the relationship betweenong on the distorted image obtained from the
the pixel coordinates of the image and the play- camera. Three points are then selected on the line,
ground have to be known. This relationship also two in the corners and one in the middle. By mov-
includes distortions caused by camera lenses. Sev4ng in a normal direction from the line the pixels
eral types of lens distortions exist; radial distortion on the thresholded image belonging to the bound-
is the most problematif10], especially when in-  ary that are closest to the previously selected
expensive wide-angle lenses are used. The prob-points are chosen. These three pixels are trans-
lem of camera calibration has therefore received formed by means of transformatig¢d) in an opti-
wide attention in computer vision applications. mization procedure to change parameteruntil

The most widely used method is the polynomial the most satisfactory collinearity of the trans-
model for camera distortiofl1,12. Perset al. formed pixels is obtained.

[10] suggested a mathematical model of radial dis-

tortion based on camera and lens projection geom-6.1.2. Rectifying the effect of titled camera

etry. Their idea is followed in the approach below.  |n a robot soccer game there are two cameras—
The camera calibration routine consists of two one for each team. One of them is placed slightly
steps originating from the demand for an easy-to- |eft or right from the playground center. In order
use and fully automated system, and from the fact for the playground to occupy as much of the ac-
that there are two main reasons for camera distor- quired image as possible, the camera has to be
tion. The first is radial distortion caused by the titled, hence the perspective distortion. With an as-
zoom(lenseg and the second is perspective distor- sumption of perfect projection, e.g., with a pin-
tion caused by the tilt of the camera. hole camera, a set of parallel lines in the scene is
projected onto a set of lines in the image that meet
at a common point. This point of intersection, per-
haps at infinity, is called the vanishing point. The
three orthogonal vanishing points form a triangle,
and the intersection of the triangle’s heights is

6.1. Camera calibration

6.1.1. Radial distortion rectification

To correct radial distortion, a radial distortion
model[10] based on camera and lens projection
geometry is used

H (1—e- 2H) " called the principal point. Many good and robust
R=f(r)=5 ——5—=H- sin?-(—), algorithms are available for the detection of per-
") 2 e " H spective[13,14]. An efficient and robust method

(4)

whereR is the rectified radiug; is the radius from
the distorted imag¢Eq. (5)], andH is the focal
length. Letx andy be the coordinates of a pixel in
the distorted image, and &t andY be the coor-
dinates of the same pixel in the rectified image.
The origin of the transformatio) is placed in

of vanishing point detection and transformation
that relies only on the information gained from the
playground is selected. Its basic idea was intro-
duced by Fanget al.[15], and reads

(pX=1)x+gXy=—X,

(6)
pPYXxt(qY—1y=-Y,
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~

Fig. 6. Distorted imagémage from the camera with radial
and perspective distortion

wherex andy are the coordinates of rectified im-
age, whereaX andY are the coordinates of an
image with rectified radial distortion only. The pa-
rametersp and q are estimated from the location
of vanishing points, which are defined by the cross
sections of the lines fittedby means of Hough
transformation to the playground boundaries on
image with rectified radial distortion. The princi-
pal point is placed in the center of the image. The
two lines running from the principal point to the

calculated vanishing points are almost perpendicu-

lar. From the position of the vanishing points and
the principal points, playground rotation is deter-
mined. If the detected rotation is not negligible,
the rotation should also be rectified prior to per-
spective transformation. Parametgrandq from
Eq. (6) are obtained by

B 1
Pra,
1

7

! (7)
Q—d—,

U2
Wheredvl is the distance from the principal point

to the horizontal vanishing point artdiu2 is the

distance to the vertical vanishing point.

The example of the complete camera calibrating
procedure is shown in figures below. Distorted im-
age obtained from the camera is shown in Fig. 6
and the rectified image is shown in Fig. 7.

Although both the radial distortion and perspec-
tive correction are very simple, running the algo-
rithm on every incoming image from the camera is
time-consuming. Pixel classification, image seg-
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b1

Fig. 7. Rectified image(a) corrected radial distortion only;
(b) corrected radial and perspective distortion.

mentation, and image labeling are therefore per-
formed on a distorted image and only the esti-
mated objects coordinates are transforniedial
distortion and perspective rectification

6.2. Compensating for irregular illumination
conditions

Non-uniform illumination caused by irregular il-
lumination is the main reason for lo&sr incorrect
estimation of the players or the ball during the
game. It is often the case that the center of the
playground is more illuminated than its corners. If
a vision system is taught a specific color when the
carrier is in the center of the playground, there is a
strong possibility that this color will not be recog-
nized when its carrier is positioned in one of the
corners. Non-uniform illumination and illumina-
tion conditions are more or less constant during
the game, thus a static shade model could be built
in the initialization phase. The relation between
the true (ideal uniform illumination image
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Yipixel] 480 0

Xlpixel]

Fig. 8. Calculated multiplicative compone(@/NBCK) for the red channel.

U(x,y) and acquired imagBl(x,y) is usually de- plane consists of several peaks and valleys which
scribed by means of a linear model of image for- cannot be modeled sufficiently by means of
mation second-order polynomials but by those of higher
order. It can be quite difficult to estimate the order
NOGY) =U X Y)Su(xy) = Salxy),  (8) of a polynomia? in a model, hence a simpler
whereSy,(x,y) is the multiplicative andS,(x,y) method was chosen. The proposed method is
the additive component. There are two types of acquisition-based, it employs a background image,
non-uniform illumination correction methods, @and the additive component is discarded. Non-
namely, retrospective and acquisition-based. uniform illumination is finally corrected by
Acquisition-based methods involve taking one or
two reference images and interpreting them as 2 _ N(x,y)
S > U(x,y) : 9
multiplicative and additive components for the ac- Ngck(X,Y)
quired image, while retrospective methods rely A
solely on the information content of the acquired whereU(X,y) is the corrected imag®\gck(X,Y)
image. The most intuitive retrospective methods is the background image, ar@ is the normaliza-
for correcting multiplicative and smooth intensity tion constant needed to restore the desired gray
variations are homomorphic filtering, image blur- level range. To improve computational time effi-
ring, smoothing, averaging, Fourier-domain filter- ciency, multiplication by multiplicative compo-
ing, and homomorphic unsharp maskifitp]. In nentC/Ngck(X,Y) in Eq.(9) should be realized by
Likar et al. [17] additive and multiplicative non- means of a look-up table.
uniform illumination components were approxi- Acquiring the multiplicative componeniThe
mated by means of second-order polynomials. Our court and the background in camera’s field of view
test showed that this type of model did not im- was covered with gray paper sheets, and the ac-
prove detection, and sometimes even made it quired reference imagéNgck(X,y) then repre-
worse. The reason for such results lies in the shapesented the non-uniform illumination plane of a
of the illumination plane. A typical illumination  multiplicative componen€/Ngck(X,Y) in relation
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Fig. 9. Camera image with color patches arranged over the playground and intensity illumination contours displayed.

(9). The reference image was retouched with a termined. The pixel classification and segmenta-

slight Gaussian blurring to increase the smooth-

ness of the non-uniform illumination plane. The
illumination planes were calculated for all three
channelgred, green, and blgeFig. 8 shows only
the plane for the red channel, while the other two
(green and bluehave a similar shape. The values
on axis z in Fig. 8 correspond to illumination
strength; more illuminated regions have smaller
values of axisz and vice versa.

The illumination plane from Fig. 8 i&ccording
to Fig. 1) applied to incoming camera images. To
test the efficiency of the non-uniform illumination
correction algorithm, a number of color patches of

tion algorithm is presented on the incoming cam-
era image(Fig. 10, and then on the same image
with compensated non-uniform illuminatidifrig.
17).

In Figs. 10 and 11, the regions with black color
represent recognized pixels which belong to color
patches from Fig. 9. A pixel is classified as be-
longing to the color patches if it fits the represen-
tative color thresholds. Due to non-uniform illumi-
nation (see the intensity illumination contours in
Figs. 9—-11 or the illumination plane in Fig.,),8
some color patches in Fig. 10 are purely detected
or even undetected.

the same color are arranged over the playground From Fig. 11 it can be seen that non-uniform

(see Fig. 9. From the color patch in the center of

Fig. 9 the representative color thresholds are de-

illumination compensation improves the efficiency
of the classification and segmentation algorithm.
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Fig. 10. Classified pixels from the camera image in Fig. 9.
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Fig. 11. Classified pixels from the camera image in Fig. 9 with compensated non-uniform illumination.
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All of the patches from Fig. 9 can be reliably iden-
tified from the compensated imadfeig. 11), while
this could not be achieved by using the non-
compensated imagéig. 10.

7. Conclusions

The issues that the paper address are vexing
ones for the robot soccer community; issues that
are often passed as trivial. However, there is little
literature on effective solutions to the problems,
which is often a source of frustration to teams who
wish to purse other issues in the soccer domain
(such as Al and contral

An approach toward establishing a fast and ro-
bust vision system for the purpose of a robot soc-
cer game is presented. Special consideration is
given to optimization of computational work and
robustness issues. The latter are assured by inclu
sion of methods for image quality improvement
such as correction of non-uniform illumination
and camera lens distortions. Robustness is further
achieved by time-efficient algorithms which en-
able global image processing. By contrast, some
vision systems used by other robot soccer teams
employ local image processing to obtain the de-
sired frame rate of vision system. The major dis-
advantage of these latter algorithms is loss of one
or more objectgrobots or ball for some unpre-
dicted reasonglightening conditions, collisions,
bugs. The local search areas have to be increased
until objects are found, which results in larger and
irregular sample time. This could not happen with
global image processing. However, a disadvantage
of the presented approach can appear if a large
number(more than 15 of different color patches
have to be followed. Some of them could then
become quite similar on camera image which
could result in wrong objects’ estimation. The
problem will be dealt with in future work by in-
clusion of object tracking algorithms.

The developed software is divided into two
separate applicationgvision and contrgl each
running in different threads and communicating
through a shared memory. Thus multi-task pro-
cessing is easily achieved and programming is
more transparent.

From the vision part perspective, our intention
was to efficiently merge classification, connected
region determination, and labeling. The applied
approach is confirmed by the short time needed for
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an incoming image processing. The time required
to finish the entire position estimation is no more
than 7 ms on 1.4 GHz Pentium 4 computer. Thus
the theoretical limit is 100 Hz image processing,
irrespective of the capabilities of the frame grab-
ber and the camera.

Any incorrect or inaccurately estimated position
of the robots or the ball results in a poor game
apart from perfection of the strategy control algo-
rithm. The robustness of the presented vision sys-
tem is therefore improved by means of camera
calibration algorithms. The suggested procedure
for shading correction proved useful when the il-
lumination conditions remained more or less un-
changed during the game. The optimized algo-
rithms presented enable the vision system to be
used in real-time applications where robustness to
irregular illumination and to camera distortions are
important.
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